

FCBCrypto software Windows installation and user guide

Table of contents
CONCEPT...1
BEGINING..2
UNPACKING...2
PREREQUISITES...3
DATA ENCRYPTION KEY..4
INSTALLATION...5
CORE CODE SIGNING..5

Core code signing summary..6
How core code signing works...6

SETTINGS...7
AFTER INSTALLATION..9
KEY MANAGEMENT..11

Initialization...11
Deinitialization..12
Key management summary...13

DATA COMPRESSION...13
DEMOS, EXAMPLES AND TESTS..14
VERSION..16
TAMPER-PROOFING..16
COPYRIGHTS...17
CONTACTS...17

CONCEPT

Database in-memory context is filled by cryptographic related information from a pre-defined table, an operating

1

FCBCRYPTO

PLAIN DATA

ENCRYPTION
DATABASE IN-MEMORY CONTEXT

PL/SQL PACKAGE

DECRYPTION

ENCRYPTED DATA

KEY FILE USB SECURITY TOKEN

SETTING TABLE

BASE
CRYPTOGRAPHIC
KEY

ADDITIONAL
CRYPTOGRAPHIC
KEYDECRYPTED DATA

PLAIN DATA

ENCRYPTION
DATABASE IN-MEMORY CONTEXT

PL/SQL PACKAGE

DECRYPTION

KEY FILE USB SECURITY TOKEN

SETTING TABLE

BASE
CRYPTOGRAPHIC
KEY

ADDITIONAL
CRYPTOGRAPHIC
KEYDECRYPTED DATA

system key file and an USB security token (Linux only). Data go through the PL/SQL package to be encrypted or
decrypted. Before encryption or decryption actions the PL/SQL package reads cryptographic information from
the database in-memory context. Data are encrypted or decrypted and returned back.

BEGINING

FCBCRYPTO software is provided as a binary self-extracting archive file. Its name looks like
fcbcrypto-1.2.40.exe where 1 is a version number, 2 is a subversion number and 40 is a build number.

UNPACKING

Please run fcbcrypto-*.exe file. End User License Agreement Window appears:

You must accept End User License Agreement to continue. Next dialog window proposes to choose a catalog to
unpack software:

And the last unpacking step is a request to run postunpack.bat file.

postunpack.bat file simply re-arranges unpacked files to sub-folders. After all you should get files and directories
are similar to

2

FCBCRYPTO

Z:\2>dir

02/13/2018 12:43 PM <DIR> dat
02/13/2018 12:43 PM <DIR> doc
02/13/2018 12:41 PM 389 postunpack.bat
02/13/2018 12:43 PM <DIR> sql

Z:\2>dir doc

02/13/2018 12:41 PM 178,235 FCBCryptoWindowsInstallationAndUserGuide.pdf
02/13/2018 12:41 PM 58,430 FCBCryptoDataSheet.pdf
02/13/2018 12:41 PM 222,042 FCBCryptoUNIXInstallationAndUserGuide.pdf
02/13/2018 12:41 PM 39,059 FCBCryptoLicense.pdf

3Z:\2>dir sql

02/13/2018 12:41 PM 260 cre_core.sql
02/13/2018 12:41 PM 260 cre_PrimaryObjects.sql
02/13/2018 12:41 PM 3,500 cre_tbl_fcbcrypto_setting.sql
02/13/2018 12:41 PM 651 cre_tbl_fcbcrypto_ce.sql
02/13/2018 12:41 PM 709 cre_fnc_fcbcrypto_hashtype.sql
02/13/2018 12:41 PM 155 cre_lib_fcbcrypto.sql
02/13/2018 12:41 PM 315 cre_jsr_fcbcrypto.sql.win
02/13/2018 12:41 PM 348 cre_jsr_fcbcrypto_feedback.sql.win
02/13/2018 12:41 PM 2,770 cre_pkg_fcbcrypto.pks
02/13/2018 12:41 PM 11,830 cre_pkg_fcbcrypto.pkb
02/13/2018 12:41 PM 276 cre_DemoAndTestsObjects.sql
02/13/2018 12:41 PM 1,201 step_5_test.sql
02/13/2018 12:41 PM 16,719 step_7_test.sql
02/13/2018 12:41 PM 6,543 cre_pkg_fcbcrypto_demo.pck
02/13/2018 12:41 PM 1,467 step_8_test.sql
02/13/2018 12:41 PM 6,849 step_10_test.sql
02/13/2018 12:41 PM 5,680 step_11_test.sql
02/13/2018 12:41 PM 956 step_12_test.sql
02/13/2018 12:41 PM 346 step_14_test.sql
02/13/2018 12:41 PM 1,058 step_15_test.sql
02/13/2018 12:41 PM 734 step_17_test.sql
02/13/2018 12:41 PM 6,405 step_18_test.sql

PREREQUISITES

There are prerequisites to start installation

a) Oracle database 11g (excepting Express Edition1), 12c or 18c
b) %ORACLE_HOME% environment variable

1 Oracle Database 11g Express Edition

3

FCBCRYPTO

http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html

c) Oracle listener service
d) %ORACLE_HOME%\bin\sqlplus utility
e) database user privileges

b) %ORACLE_HOME% environment variable must be setup

c) Oracle listener service must be setup and started.

d) %ORACLE_HOME%\bin\sqlplus2 utility must be available via %PATH% environment variable.
%ORACLE_HOME%\bin\sqlplus is used in FCBCRYPTO software installation process to run SQL scripts.

e) A database user where FCBCRYPTO software is going to be installed must have following grants

• create any context
• drop any context
• create library
• create table
• create procedure
• create sequence
• create trigger
• create type
• create session
• alter session
• select any dictionary
• read/write on CUSTOM_KEY_DIR5 where key files will be stored
• execute on SYS.DBMS_CRYPTO3

• execute on SYS.UTL_COMPRESS4

DATA ENCRYPTION KEY

FCBCRYPTO software provides 4AES(128, 192, 256)5 encryption technique for char, nchar, varchar2,
nvarchar2, string, blob, clob, nclob, raw, long, long raw, data types and modified OTP6 encryption technique for
number, float, date, timestamp data types. Any binary number data types aren’t supported. AES(128, 192, 256)
means a 16, 24 or 32 symbol base cryptographic key must be used. FCBCRYPTO software uses the base
cryptographic key as a common key as for AES so for OTP technique. A base cryptographic you must have to
perform data encryption/decryption.

Key file and key file directory must be presented at the TBL_FCBCRYPTO_SETTING table (see SETTINGS
chapter). Those values reach the table via sql\cre_tbl_fcbcrypto_setting.sql file’s launch during installation
process (see INSTALLATION chapter). That means you should define an operating system key file name, an
Oracle directory name for the key file directory and a base cryptographic key before installation, i.e.

• define a no white space 16 or 24 or 32 symbol base cryptographic key
• define a key file directory for example c:\tmp

2 you aren’t limited and you can use any GUI based Oracle SQL aware program to run SQL scripts
3 DBMS_CRYPTO
4 UTL_COMPRESS
5 Advanced Encryption Standard
6 One-time pad

4

FCBCRYPTO

file:///c:/tmp
https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://docs.oracle.com/database/121/ARPLS/u_compr.htm#ARPLS381
https://docs.oracle.com/database/121/ARPLS/d_crypto.htm

• create a key file for example c:\tmp\key.txt
• insert the base cryptographic key into the key file
• save the key file
• define under which Oracle database owner you install FCBCRYPTO software
• run SQL*Plus utility %ORACLE_HOME%\bin\sqlplus.exe “/ as sysdba”
• 5SQL> create directory CUSTOM_KEY_DIR as c:\tmp
• SQL> grant read, write on directory CUSTOM_KEY_DIR to FCBCRYPTO-software-owner
• open to edit sql\cre_PrimaryObjects.sql file
• adjust cre_tbl_fcbcrypto_setting.sql CUSTOMER_KEY_DIR key.txt string

INSTALLATION

It’s highly recommended to perform installation under Oracle binary owner operating system account, i.e. if
Oracle binaries’ installation was performed under Administrator account, Oracle services start under
Administrator account, please use Administrator account to install FCBCRYPTO software.
There are installation steps:

Z:\cd directory-where-FCBCRYPTO-software-was-unpacked\sql

Z:\%ORACLE_HOME%\bin\sqlplus.exe7 owner/password @cre_PrimaryObjects.sql

And an output in case of success

Library created.

Java created.

Java created.

Package created.

No errors.

Package body created.

No errors.

Package body altered.

CORE CODE SIGNING

Core code signing is a FCBCRYPTO software feature starting from v. 1.2.379. The reason of that feature’s
presence is preventing FCBCRYPTO software unauthorized execution. How is it made? When you download
FCBCRYPTO software from web site, the main part of FCBCRYPTO software, i.e. PKG_FCBCRYPTO package,
is fully valid, but dysfunctional. This is because of a very small non-executable encrypted part of

7 you aren’t limited and you can use any GUI based Oracle SQL aware program to run SQL scripts

5

FCBCRYPTO

file:///c:/tmp

PKG_FCBCRYPTO package is located at the TBL_FCBCRYPTO_CE table in B_CORE blob field. That small
non-executable encrypted part is the unsigned core code. Without the executable, i.e. signed, core code,
PKG_FCBCRYPTO package, staying valid from the PL/SQL language point of thew view, can’t perform any
operations. To make unsigned core code signed and executable you need to have key_ce.txt key file in
5CUSTOMER_KEY_DIR directory. File must contain 16 or 24 or 32 symbol core code signing key.

Next you should sign TBL_FCBCRYPTO_CE.B_CORE data, i.e. make it valid and executable

SQL> set serveroutput on
SQL> exec pkg_fcbcrypto.prc_init;
SQL> exec pkg_fcbcrypto.prc_ce_init;

No errors mean successful signing.

Core code signing summary
• core code signing is not about data encryption/decryption
• core code signing prevents unauthorized execution of any PKG_FCBCRYPTO package functions or

procedures relating to data encryption/decryption
• core code signing must be performed during the first FCBCRYPTO software installation only
• core code signing key is located in key_ce.txt key file
• core code signing key is absolutely different to the base and additional cryptographic keys
• TBL_FCBCRYPTO_CE.B_CORE field contains not executable, i.e. unsigned, encrypted PL/SQL core

code when the installation starts first
• PKG_FCBCRYPTO package is valid, but dysfunctional without executable, i.e. signed, core code from

TBL_FCBCRYPTO_CE.B_CORE
• core code, i.e. TBL_FCBCRYPTO_CE.B_CORE data, gets signed, i.e. executed, during successful fist

software installation
• in case of successful fist software installation your database gets a “watermark”
• “watermark” is a hidden sign inside database
• “watermark” doesn’t affect database performance or any database features
• “watermark” prevents any try to make yet one core code signing
• thus second core signing is impossible by available and legal ways via your copy of FCBCRYPTO

software
• please make backup copies of the core code signing key and the signed

TBL_FCBCRYPTO_CE.B_CORE data right after successful FCBCRYPTO software installation
• in case of signed TBL_FCBCRYPTO_CE.B_CORE data is lost, but the core code signing key is not you

can get in contact with the FCBCRYPTO software owner, send the the core code signing key and get a
new signed-by-your-key TBL_FCBCRYPTO_CE.B_CORE data

• in case of the core code signing key is lost, but signed TBL_FCBCRYPTO_CE.B_CORE data is not you
can get in contact with the FCBCRYPTO software owner, send the signed
TBL_FCBCRYPTO_CE.B_CORE data and get a new core code signing key

How core code signing works

• you perform initialization procedure from KEY MANAGEMENT chapter.
• initialization procedure reads a key from the key_ce.txt key file, encrypts the key and places it into

in-memory context
• initialization procedure reads signed encrypted PL/SQL code from TBL_FCBCRYPTO_CE.B_CORE

6

FCBCRYPTO

and places it into in-memory context
• initialization procedure detects a database “watermark” presence
• if database “watermark” is present, a key from key file and a key from TBL_FCBCRYPTO_CE.B_CORE

are equal then authorization passed successfully and PKG_FCBCRYPTO package functions or
procedures can encrypt or decrypt data.

• if the condition above is not complied, PKG_FCBCRYPTO package functions or procedures can’t
encrypt or decrypt data.

SETTINGS

FCBCRYPTO software has settings. All of them get values during FCBCRYPTO software installation process,
but after process’ finish you can adjust most of them. All settings are placed at TBL_FCBCRYPTO_SETTING
table. Let’s see:

S_ACTIVE S_NAME S_VALUE S_VALUE_2 S_DESCRIPTION

Y g_encryption_type 4358 164 SYS.DBMS_CRYP
TO.ENCRYPT_AE
S128 +
SYS.DBMS_CRYP
TO.CHAIN_CBC +
SYS.DBMS_CRYP
TO.PAD_PKCS5

N g_encryption_type 4359 244 SYS.DBMS_CRYP
TO.ENCRYPT_AE
S192 +
SYS.DBMS_CRYP
TO.CHAIN_CBC +
SYS.DBMS_CRYP
TO.PAD_PKCS5

N g_encryption_type 4360 324 SYS.DBMS_CRYP
TO.ENCRYPT_AE
S256 +
SYS.DBMS_CRYP
TO.CHAIN_CBC +
SYS.DBMS_CRYP
TO.PAD_PKCS5

Y g_keyfile_dir DATA_PUMP_DIR directory (see
ALL_DIRECTORIE
S view) where
keyfile is placed

Y g_keyfile key.txt keyfile name

g_keyfile_ce key_ce.txt core code signing
keyfile name

Y g_os Windows local operating

7

FCBCRYPTO

S_ACTIVE S_NAME S_VALUE S_VALUE_2 S_DESCRIPTION

system name

Y g_context global global (SGA based)
or local (PGA
based) context
access

Y g_str_deflation_ratio 6 0 deflation is off,
1-fast ...9-best is on
for varchar2 and
nvarchar2 data type

Y g_raw_deflation_ratio 6 0 deflation is off,
1-fast ...9-best is on
for raw data type

Y g_blob_deflation_ratio 6 0 deflation is off,
1-fast ...9-best is on
for blob data type

Y g_clob_deflation_ratio 6 0 deflation is off,
1-fast ...9-best is on
for clob data type

Y g_service_function_user_list SYSTEM user list who
authorized are to
run service
routines: prc_init,
prc_deinit,
fnc_usb_ste_prese
nt

Y g_encrypted_context_base_
key

Encrypted base key
is stored in context

g_encryption_type is a kind of AES encryption to use. De-/activate any of them via “Y” or “N” value in the
S_ACTIVE field. Only one “Y” value must be set. S_VALUE_2 is the size4 of a base cryptographic key. Please
change neither S_VALUE nor S_VALUE_2 by hands.

g_keyfile_dir is a CUSTOM_KEY_DIRECTORY5 directory from DBA_DIRECTORIES view where the base
cryptographic key file is placed. S_ACTIVE value is always “Y”.

g_keyfile. S_VALUE is a Windows file name where the base cryptographic key is stored. S_ACTIVE value is
always “Y”.

g_keyfile_ce. S_VALUE is a Windows file name where the core code signing key is stored. S_ACTIVE value is
always “Y”.

g_os is an operating system common name. Please change in case of migration to the other OS only.
S_ACTIVE value is always “Y”.

8

FCBCRYPTO

g_context can have global (SGA based) or local, i.e. session only (PGA based) context access8 value. Default is
global. Change it if you need. S_ACTIVE value is always “Y”.

g_str_deflation_ratio, g_raw_deflation_ratio, g_blob_deflation_ratio, g_clob_deflation_ratio is
compression quality (for the correspondent data types) in the range from 0 to 9, i.e. 0 = no compression, 1 =
fast compression, 9 = best compression. Default value is 6. Change it if you need. S_ACTIVE value is always
“Y”. See DATA COMPRESSION chapter.

g_service_function_user_list12 lists users who authorized are to run key management service routines:
PKG_FCBCRYPTO.PRC_INIT procedure, PKG_FCBCRYPTO.PRC_DEINIT procedure(see more details in
KEY MANAGEMENT chapter). Default value is a FCBCRYPTO software owner. You can add anyone or remove
all of them. S_ACTIVE value is always “Y”.

g_encrypted_context_base_key defines to perform (S_ACTIVE = “Y”) or not to perform (S_ACTIVE = “N”)
base cryptographic key context encryption, i.e. if base cryptographic key is Z3Wx&*&^%$#@CCZF in case of
S_ACTIVE = “N” it will be stored as Z3Wx&*&^%$#@CCZF value in context, in case of S_ACTIVE = “Y” it will be
stored as
3445499CC20C7D39E2CDAB00BDEC84792503556AEC4A88E711E2913E40C457DA52DDD96F3E20E383AF
54CBA79A985FCE value.

AFTER INSTALLATION

When installation finishes you have following objects in FCBCRYPTO software schema

• PKG_ FCBCRYPTO package9

• TBL_FCBCRYPTO_CE table10

• FNC_ FCBCRYPTO_HASHTYPE11 function
• LIB_ FCBCRYPTO external library12

• JSR_FCBCRYPTO java source13

• JSR_FCBCRYPTO_FEEDBACK java source14

• TBL_FCBCRYPTO_SETTING table15

PKG_ FCBCRYPTO package is a main part of FCBCRYPTO software. PKG_ FCBCRYPTO package consists of
two parts: a package specification and a wrapped package body.

Correspondent files3:

• sql\cre_pkg_fcbcrypto.pks
• sql\cre_pkg_fcbcrypto.pkb

PKG_ FCBCRYPTO package provides following encryption, decryption and service routines:

8 context creation
9 PKG_ FCBCRYPTO package validity depends on all objects below
10 see CORE CODE SIGNING chapter for more details
11 provides maximum available cryptographic hash algorithm for the current version of Oracle database
12 it exists but it is not used in current software release
13 it exists but it is not used in current software release
14 it exists but it is not used in current software release
15 see SETTINGS chapter for more details

9

FCBCRYPTO

https://docs.oracle.com/database/121/SQLRF/statements_5003.htm#SQLRF01202

CHAR, VARCHAR2, STRING

• function fnc_encvchr (p_data in varchar2, l_custom_deflation in pls_integer default -1) return varchar2
• function fnc_decvchr (p_data in varchar2, l_custom_deflation in pls_integer default -1) return varchar2

NCHAR, NVARCHAR2

• function fnc_encnvch (p_data in nvarchar2, l_custom_deflation in pls_integer default -1) return
nvarchar2

• function fnc_decnvch (p_data in nvarchar2, l_custom_deflation in pls_integer default -1) return
nvarchar2

NUMBER, FLOAT (in -/+9.9*10^36 range)

• function fnc_encnum (l_value in number) return number
• function fnc_decnum (l_value in number) return number

DATE

• function fnc_encdate (l_value in date) return date
• function fnc_decdate (l_value in date) return date

TIMESTAMP WITH OR WITHOUT TIMEZONE16

• function fnc_enctstp (l_value in timestamp / timestamp with time zone) return timestamp / timestamp
with time zone

• function fnc_dectstp (l_value in timestamp / timestamp with time zone) return timestamp / timestamp
with time zone

BLOB

• function fnc_encblob (p_blob in blob, l_custom_deflation in pls_integer default -1) return blob
• function fnc_decblob (p_blob in blob, l_custom_deflation in pls_integer default -1) return blob

CLOB

• function fnc_encclob (p_clob in clob, l_custom_deflation in pls_integer default -1) return clob
• function fnc_decclob (p_clob in clob, l_custom_deflation in pls_integer default -1) return clob

NCLOB

• function fnc_encnclob (p_nclob in nclob, l_custom_deflation in pls_integer default -1) return nclob
• function fnc_decnclob (p_nclob in nclob, l_custom_deflation in pls_integer default -1) return nclob

RAW

• function fnc_encraw (p_raw in raw, l_custom_deflation in pls_integer default -1) return raw
• function fnc_decraw (p_raw in raw, l_custom_deflation in pls_integer default -1) return raw

16 encryption is limited by milliseconds, i.e. microseconds and less aren’t encrypted

10

FCBCRYPTO

LONG RAW

• function fnc_enclraw (p_lraw in long raw, l_custom_deflation in pls_integer default -1) return long raw
• function fnc_declraw (p_lraw in long raw, l_custom_deflation in pls_integer default -1) return long raw

LONG

• function fnc_enclong (p_long in long, l_custom_deflation in pls_integer default -1) return long
• function fnc_declong (p_long in long, l_custom_deflation in pls_integer default -1) return long

Key management routines. See KEY MANAGEMENT chapter

• procedure prc_init (l_in_key in varchar2 default null)
• procedure prc_deinit

Integrity checking routines. See TAMPER-PROOFING chapter

• function fnc_intergrity return varchar2

“enc” in routine names stands for encryption. “dec” in routine names stands for decryption

l_custom_deflation input parameter means compression ratio in the range from 0=no compression, 1=fastest
compression to 9=best compression. Omitting, i.e. using default -1 value, means correspondent
g_*_deflation_ratio value from TBL_FCBCRYPTO_SETTING table (see SETTINGS chapter) will be used.

KEY MANAGEMENT

FCBCRYPTO software provides centralized in-memory key management process. Key management
initialization is a mandatory first step to start data encryption/decryption17. The base cryptographic key or base
cryptographic key traces aren’t stored or presented in the constant database objects like tables. The base
cryptographic key is distributed to the FCBCRYPTO decryption/encryption functions via Oracle database
in-memory object only. That object is context (a set of application-defined attributes that validates and secures
an application). Encryption/decryption can’t be performed without in-memory loaded base cryptographic key.
How it works in details.

Initialization

Database user having privileges to execute PKG_FCBCRYPTO package runs PKG_FCBCRYPTO.PRC_INIT
procedure. PKG_FCBCRYPTO.PRC_INIT procedure accepts either

• a null input parameter and then procedure starts to read base cryptographic key from the key file (see
g_keyfile in TBL_FCBCRYPTO_SETTING table) from the key file directory5 (see g_keyfile_dir in
TBL_FCBCRYPTO_SETTING table) or

• a 16, 24 or 32 symbol base cryptographic key as an input parameter18

SQL> exec pkg_fcbcrypto.prc_init;
or

17 Encryption/decryption PKG_FCBCRYPTO package routines don’t work without key management initialization
18 This means you don’t need to worry key file (see g_keyfile in TBL_FCBCRYPTO_SETTING table) can be stolen

11

FCBCRYPTO

SQL> exec pkg_fcbcrypto.prc_init('cHBmNz7cfTqH5t82VlXvjd8LdL45XccL');

If user is not in allowed-to-run-key-magement-routine-user list, i.e.

SQL> select S_VALUE as USERS_ALLOWED_TO_RUN_KEY_MANAGEMENT_ROUTINES
 from TBL_FCBCRYPTO_SETTING
 where S_NAME = ‘g_service_function_user_list’ and S_ACTIVE=’Y’

then PKG_FCBCRYPTO.PRC_INIT stops initialization19 and a message

User is not authorized to run prc_init routine.

appears.

Otherwise PKG_FCBCRYPTO context is re-/created with a global or local access. Context access comes from

SQL> select S_VALUE as CONTEXT_ACCESS
 from TBL_FCBCRYPTO_SETTING
 where S_NAME = ‘g_context’ and S_ACTIVE=’Y’

After context creation context is filled out by the cryptographic related variables and values.

Here PKG_FCBCRYPTO.PRC_INIT procedure finishes key management initialization. This means all
encryption/decryption PKG_FCBCRYPTO package routines (see AFTER INSTALLATION chapter) are ready to
be used.

An example of successful key management initialization SQL*Plus output by PKG_FCBCRYPTO.PRC_INIT
procedure

PKG_FCBCRYPTO context is being re|-created...
reading setting table and filling context...
reading key file...
filling context...
init done.

PL/SQL procedure successfully completed.

What if initialization was not performed or performed unsuccessfully and data encryption/decryption functions are
called? An exception rises

ORA-06502: PL/SQL: numeric or value error

Please have a note FCBCRYPTO software doesn’t monitor a base cryptographic key presence, i.e. a
presence of the key file (see g_keyfile in TBL_FCBCRYPTO_SETTING table) at the key file directory (see
g_keyfile_dir in TBL_FCBCRYPTO_SETTING table), in a real-time mode. Also that means the key file is
present or it is not, the key file directory is present or it is not FCBCRYPTO software, if it was initialized
successfully once, knows nothing about missed key, missed catalog, i.e. in-memory context still can contain
cryptographic information. Only launched PKG_FCBCRYPTO.PRC_INIT procedure can check missed stuff.

19 Why does that user list exist? Because you may have no intention to provide key management routine executable rights
to the user already having executable grant on PKG_FCBCRYPTO package.

12

FCBCRYPTO

Deinitialization

PKG_FCBCRYPTO.PRC_DEINIT procedure simply erases previously filled cryptographic in-memory context
information and delete in-memory context. After that any attempt to call PKG_FCBCRYPTO package
encryption/decryption functions to encrypt/decrypt data gives only an error like

ORA-06502: PL/SQL: numeric or value error

An example of successful key management deinitialization SQL*Plus output by
PKG_FCBCRYPTO.PRC_DEINIT procedure

PKG_FCBCRYPTO context de-initialized

PL/SQL procedure successfully completed.

If user is not in a allowed-to-run-key-magement-routine-user list, i.e.

SQL> select S_VALUE as USERS_ALLOWED_TO_RUN_KEY_MANAGEMENT_ROUTINES
 from TBL_FCBCRYPTO_SETTING
 where S_NAME = ‘g_service_function_user_list’ and S_ACTIVE=’Y’

then PKG_FCBCRYPTO.PRC_DEINIT procedure cancels deinitialization20 and a message appears.

User is not authorized to run prc_deinit routine.

Key management summary

• base cryptographic key comes from the key file (see g_keyfile_dir in TBL_FCBCRYPTO_SETTING
table) and the key file directory5
(see g_keyfile_dir in TBL_FCBCRYPTO_SETTING table)

• base cryptographic key can come as an input parameter of PKG_FCBCRYPTO.PRC_INIT procedure
call also

• base cryptographic key is stored in in-memory context after initialization
• base cryptographic keys get to the in-memory context via PKG_FCBCRYPTO.PRC_INIT procedure call
• base cryptographic key can be guaranteed erased from the memory by

PKG_FCBCRYPTO.PRC_DEINIT procedure call, the in-memory context’s deletion by database
administrator or by the database reboot

• real cryptographic key is a derivative of the base cryptographic keys
• real cryptographic doesn’t store in the in-memory context where the base cryptographic keys do
• real cryptographic key is calculated every time when data encryption/decryption PKG_FCBCRYPTO

package routines are called
• data are encrypted and decrypted by the real cryptographic key only
• any keys aren’t stored in the constant database objects like tables
• PKG_FCBCRYPTO.PRC_INIT procedure must be call only once if context was defined as global21

20 Why does that user list exist? Because you may have no intention to provide key management routine executable rights
to the user already having executable grant on PKG_FCBCRYPTO package.

21 see g_context in TBL_FCBCRYPTO_SETTING table

13

FCBCRYPTO

• PKG_FCBCRYPTO.PRC_INIT procedure must be call every time when session is created if context
was defined as local

• Encryption/decryption is impossible without initial PKG_FCBCRYPTO.PRC_INIT procedure call

DATA COMPRESSION

FCBCRYPTO software provides a data compression option for char, nchar, varchar2, nvarchar2, string, blob,
clob, nclob, raw, long, long raw SQL and PL/SQL data types. Compression availability is not a goal of
FCBCRYPTO software, but a side effect. This effect got a life because of

• impossibility to forecast the size of encrypted data especially for *char* and string data types.
• obligatory conversion for the text contained data to ALT32UTF8 format before encryption

FCBCRYPTO software data compression bases on Oracle UTL_COMPRESS package. FCBCRYPTO software
user may change compression quality in the range from 0 to 9, i.e. 0 = no compression, 1 = fast compression, 9
= best compression quality. Default value is 6 and it comes from

SQL> select S_NAME, S_VALUE
 from TBL_FCBCRYPTO_SETTING
 where S_NAME like 'g_%_deflation_ratio' and S_ACTIVE='Y';

S_NAME S_VALUE
---------------------- --------------
g_str_deflation_ratio 6
g_raw_deflation_ratio 6
g_blob_deflation_ratio 6
g_clob_deflation_ratio 6

 (see SETTINGS chapter). Please have a note compression could be ineffective in case of small size data.
Also you can use either default ratio or customized ratio via l_custom_deflation input parameter of
encryption/decryption PKG_FCBCRYPTO package routines (see AFTER INSTALLATION chapter). Customized
ratio has higher priority over default TBL_FCBCRYPTO_SETTING table ratio. It’s highly not recommended to
use l_custom_deflation input parameter less than 5 when string field has length less than maximum, i.e.
4000 or 32767 characters, because it can lead to impossibility to store encrypted data

DEMOS, EXAMPLES AND TESTS

If you perform

Z:\xcopy directory-where-FCBCRYPTO-software-was-unpacked\dat* CUSTOM_KEY_DIR5

Z:\%ORACLE_HOME%\bin\sqlplus.exe owner/password @cre_DemoAndTestsObjects.sql

you will have installed and valid Oracle database demo and test objects (triggers and sequences are not listed):

14

FCBCRYPTO

• PKG_FCBCRYPTO_DEMO package
• VIW_FCBCRYPTO view
• VIW_FCBCRYPTO_SHORT view
• TBL_FCBCRYPTO table
• TBL_FCBCRYPTO_BLOB table
• GTT_FCBCRYPTO global temporary table

So how demos and PKG_FCBCRYPTO package in general can be used?

Variant A.

VIW_FCBCRYPTO_SHORT view is based on the statement

SQL> select *
 from table(PKG_FCBCRYPTO_DEMO.FNC_UNVEIL_BULK_SHORT(cursor(select * from
TBL_FCBCRYPTO)));

Plain data go to VIW_FCBCRYPTO_SHORT view. VIW_FCBCRYPTO_SHORT view contains three “instead of
insert, update and delete” triggers. When insert, delete or update statements are performed, triggers catch data,
encrypt data via PKG_FCBCRYPTO package and insert encrypted data into TBL_FCBCRYPTO table.
TBL_FCBCRYPTO table stores encrypted data only. When select statement is performed from
VIW_FCBCRYPTO_SHORT view a PKG_FCBCRYPTO_DEMO.FNC_UNVEIL_BULK_SHORT function
requests encrypted data from TBL_FCBCRYPTO table, decrypts data via PKG_FCBCRYPTO package and
return plain data to VIW_FCBCRYPTO_SHORT view.

Variant B.

15

FCBCRYPTO

INSERT

DELETE

UPDATE

SELECT

V
IW

_F
C

B
C

R
Y

P
T

O
_S

H
O

R
T

INSTEAD OF INSERT

INSTEAD OF UPDATE

INSTEAD OF DELETE PKG_FCBCRYPTO

T
B

L
_F

C
B

C
R

Y
P

T
O

PKG_FCBCRYPTO_DEMO

SELECT

INSERT

DELETE

UPDATE

SELECT

V
IW

_F
C

B
C

R
Y

P
T

O

INSTEAD OF INSERT

INSTEAD OF UPDATE

INSTEAD OF DELETE PKG_FCBCRYPTO

PKG_FCBCRYPTO_DEMO
SELECT

A
F

T
E

R
 U

P
D

A
T

E

A
F

T
E

R
 IN

S
E

R
T

A
F

T
E

R
 D

E
LE

T
E

PKG_FCBCRYPTO

TBL_FCBCRYPTO

GTT_FCBCRYPTO

VIW_FCBCRYPTO view is based on the statement

SQL> select *
 from table(PKG_FCBCRYPTO_DEMO.FNC_UNVEIL_BULK(cursor(select * from
GTT_FCBCRYPTO)));

Plain data go to VIW_FCBCRYPTO view. VIW_FCBCRYPTO view contains three “instead of insert, update and
delete” triggers. When insert, delete or update statements are performed, triggers catch data, encrypt data via
PKG_FCBCRYPTO package and insert encrypted data into TBL_FCBCRYPTO table. TBL_FCBCRYPTO table
stores encrypted data only. TBL_FCBCRYPTO table contains three “after insert, update and delete” triggers
also. After data committing triggers call PKG_FCBCRYPTO package, PKG_FCBCRYPTO package decrypts
data and plain decrypted data are inserted into global temporary GTT_FCBCRYPTO table. Why global
temporary table? Because indexes can be created on it. GTT_FCBCRYPTO table contains session level only
plain decrypted data. When select statement is performed from VIW_FCBCRYPTO view a
PKG_FCBCRYPTO_DEMO.FNC_UNVEIL function requests data from GTT_FCBCRYPTO table and returns
plain data to VIW_FCBCRYPTO view.

See more details in files

• sql/step_5_test.sql
• sql/cre_pkg_fcbcrypto_demo.pck
• sql/step_7_test.sql
• sql/step_8_test.sql
• sql/step_10_test.sql
• sql/step_11_test.sql
• sql/step_12_test.sql
• sql/step_14_test.sql
• sql/step_15_test.sql
• sql/step_17_test.sql
• sql/step_18_test.sql

VERSION

Z:\%ORACLE_HOME%\bin\sqlplus.exe ******/******
...
SQL> set serveroutput on
SQL> exec pkg_fcbcrypto.prc_about;

FCBCrypto software v.1.2.290
Copyright (c) 2018, Olexandr Siroklyn. All rights reserved.
...
SQL> select pkg_fcbcrypto.fnc_about from dual;

FNC_ABOUT
--
FCBCrypto software v.1.2.290 Copyright (c) 2018, Olexandr Siroklyn. All rights r
eserved.

16

FCBCRYPTO

TAMPER-PROOFING

PKG_FCBCRYPTO package is a tamper-proof featured PL/SQL package. This means package body
encapsulates hash sum and other related stuffs. Integrity self-checking can be performed in case of suspicions
the package body was unauthorized modified. That intrusion can be detected via

Z:\%ORACLE_HOME%\bin\sqlplus.exe ******/******
...
SQL> select pkg_fcbcrypto.fnc_integrity from dual;

FNC_INTEGRITY
--
Integrity check passed. No package code modification detected.

$ sqlplus ******/******
...
SQL> select pkg_fcbcrypto.fnc_integrity from dual;

FNC_INTEGRITY
--
Integrity check failed. Package code modification detected.

COPYRIGHTS

Copyright 2018 Olexandr Siroklyn. All rights reserved.

CONTACTS

Olexandr Siroklyn
+380505771900

17

FCBCRYPTO

mailto:olexandr.siroklyn@outlook.com
https://www.linkedin.com/in/olexandr-siroklyn-4a483615/

	CONCEPT
	BEGINING
	UNPACKING
	PREREQUISITES
	DATA ENCRYPTION KEY
	INSTALLATION
	CORE CODE SIGNING
	Core code signing summary
	How core code signing works

	SETTINGS
	AFTER INSTALLATION
	KEY MANAGEMENT
	Initialization
	Deinitialization
	Key management summary

	DATA COMPRESSION
	DEMOS, EXAMPLES AND TESTS
	VERSION
	TAMPER-PROOFING
	COPYRIGHTS
	CONTACTS

