

FCBCrypto software UNIX installation and user guide

Table of contents
CONCEPT...1
BEGINING..2
PREREQUISITES...3
DATA ENCRYPTION KEY..5
CORE CODE SIGNING..6

Core code signing summary..7
How core code signing works...8

BFILE ENCRYPTION..8
SECURITY TOKEN ENCRYPTION..13
SETTINGS...15
AFTER INSTALLATION..19
KEY MANAGEMENT..21

Initialization...22
Deinitialization..24
Security token presence verifying...24
Key management summary...26

DATA COMPRESSION...26
DEMOS, EXAMPLES AND TESTS..27
VERSION..29
TAMPER-PROOFING..29
COPYRIGHTS...30
CONTACTS...30

CONCEPT

1

 FCBCRYPTO

PLAIN DATA

ENCRYPTION
DATABASE IN-MEMORY CONTEXT

PL/SQL PACKAGE

DECRYPTION

ENCRYPTED DATA

KEY FILE USB SECURITY TOKEN

SETTING TABLE

BASE
CRYPTOGRAPHIC
KEY

ADDITIONAL
CRYPTOGRAPHIC
KEYDECRYPTED DATA

PLAIN DATA

ENCRYPTION
DATABASE IN-MEMORY CONTEXT

PL/SQL PACKAGE

DECRYPTION

KEY FILE USB SECURITY TOKEN

SETTING TABLE

BASE
CRYPTOGRAPHIC
KEY

ADDITIONAL
CRYPTOGRAPHIC
KEYDECRYPTED DATA

Database in-memory context is filled by cryptographic related information from a pre-defined table, an operating
system key file and an USB security token (Linux only). Data go through the PL/SQL package to be encrypted or
decrypted. Before encryption or decryption actions the PL/SQL package reads cryptographic information from
the database in-memory context. Data are encrypted or decrypted and returned back.

BEGINING

FCBCRYPTO software is provided as a binary self-extracting archive file. Its name looks like fcbcrypto-
1.2.40.run where 1 is a version number, 2 is a subversion number and 40 is a build number. FCBCRYPTO
software installation supposes Korn shell1 (ksh) is installed, valid and available as /usr/bin/ksh2. fcbcrypto-
1.2.40.run file can be run on UNIX like operating systems (IBM AIX, SUN/Oracle Solaris, Linux, HP HP-UX)3, i.e.

$./fcbcrypto-1.2.40.run

End User License Agreement

Preface

The following contains specific license terms and conditions for Olexandr
Siroklyn's product(s). By accepting this agreement, you agree to comply with all
the terms and conditions applicable to the specific product(s) included herein.
…

Please type y to accept, n otherwise:

As it can be seen from above there is an End User License Agreement you must accept to continue or reject to
cancel installation. In case you accept End User License Agreement unpacking starts,

Please type y to accept, n otherwise: y
Creating directory fcbcrypto
Verifying archive integrity... 100% All good.
Uncompressing installer for FCBCRYPTO software 100%
...

fcbcrypto directory is created

$ ls -ltr
total 1.3M
drwxr-xr-x. 9 **** dba 4.0K Jan 31 18:39 fcbcrypto/
-rwxr-xr-x. 1 **** dba 1.3M Jan 31 18:39 fcbcrypto-1.2.40.run*

1 Korn shell is one of prerequisites for Oracle database installation. See Installation and Upgrade Guide for Linux,
Installation Guide for IBM AIX, Installation Guide for Oracle Solaris, Installation Guide for HP-UX Itanium

2 if /usr/bin as a catalog for ksh is absolutely unacceptable for you, please either make a symbolic link or change
#!/usr/bin/ksh value in fcbcryprto/bin/cre_fcbcrypto.sh file

3 it wasn’t tested on HP HP-UX but it should work

2

 FCBCRYPTO

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/hpdbi/procedure-for-configuring-oracle-software-owner-environments.html#GUID-9390F139-EA37-4C57-BF1F-E1991ACE528E
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/ssdbi/procedure-for-configuring-oracle-software-owner-environments.html#GUID-9390F139-EA37-4C57-BF1F-E1991ACE528E
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/axdbi/procedure-for-configuring-oracle-software-owner-environments.html#GUID-9390F139-EA37-4C57-BF1F-E1991ACE528E
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/cwlin/supported-red-hat-enterprise-linux-7-distributions-for-x86-64.html#GUID-2E11B561-6587-4789-A583-2E33D705E498

$ ls -la fcbcrypto
total 44K
drwxr-xr-x. 9 **** dba 4.0K Jan 31 18:39 ./
drwxr-xr-x. 3 **** dba 4.0K Feb 2 10:15 ../
drwxr-xr-x. 2 **** dba 4.0K Jan 31 18:39 bin/
drwxr-xr-x. 2 **** dba 4.0K Jan 31 18:39 dat/
-rw-r--r--. 1 **** dba 851 Jan 31 18:39 .dbvariables
drwxr-xr-x. 2 **** dba 4.0K Jan 31 18:39 doc/
drwxr-xr-x. 2 **** dba 4.0K Jan 31 18:39 log/
drwxr-xr-x. 2 **** dba 4.0K Jan 31 18:39 man/
-rw-r--r--. 1 **** dba 2.2K Jan 31 18:39 .osvariables
drwxr-xr-x. 2 **** dba 4.0K Jan 31 18:39 sql/
drwxr-xr-x. 9 **** dba 4.0K Jan 31 18:39 src/

and FCBCRYPTO software installation starts via

$ cd fcbcrypto/bin; ./cre_fcbcrypto.sh

4Hello!

You are starting installation of FCBCRYPTO software. It's very recommended to do
that under Oracle database binaries' operating system owner account. Your current
account is '****:dba'. You can press Ctrl-C anytime to stop installation. You can
re-run installation via cd fcbcrypto/bin/../bin; ./cre_fcbcrypto.sh call5. Before
the next step please make sure following items are filled/setup/working correctly:

 a. fcbcrypto/bin/../.dbvariables file
 b. $ORACLE_HOME environment variable
 c. Oracle listener service
 d. $ORACLE_HOME/bin/sqlplus utility

PREREQUISITES

There are prerequisites to continue installation

a) fcbcrypto/bin/../.osvariables file
b) fcbcrypto/bin/../.dbvariables file
c) Oracle database 11g (excepting Express Edition6), 12c or 18c
d) $ORACLE_HOME environment variable
e) Oracle listener service
f) $ORACLE_HOME/bin/sqlplus utility
g) database user privileges
h) Oracle Database Java subsystem7

a) .osvariables file contains a small shell scripts to detect paths to the common UNIX utilities like ls, cat, diff and

4 an example from installation process
5 please re-run exactly by this way “cd fcbcrypto/bin/; ./cre_fcbcrypto.sh”
6 Oracle Database 11g Express Edition
7 a standard database cross-version and cross-edition component or How to Add the JVM Component to an Existing

Oracle Database (Doc ID 1461562.1)

3

 FCBCRYPTO

https://support.oracle.com/epmos/faces/SearchDocDisplay?_adf.ctrl-state=2jup03qd1_9&_afrLoop=198601959225363#FIX
https://support.oracle.com/epmos/faces/SearchDocDisplay?_adf.ctrl-state=2jup03qd1_9&_afrLoop=198601959225363#FIX
http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html

so on. Also .osvariables file contains directory aliases for FCBCRYPTO software installation. In common case
you don’t need to change anything inside this file.

b) .dbvariables file contains database related environment variables. Most of their values are wrong for your
database case. Some .dbvariables file values are transported to TBL_FCBCRYPTO_SETTING table
(see SETTINGS chapter) after installation finishes. You must manually adjust .dbvariables file values
relating to you needs and database parameters.

• l_EXT_LIB_DIRECTORY=/tmp points to the operating system directory where external “bridge” C
language module will be placed if you’re going to use BFILE encryption (see BFILE ENCRYPTION
chapter). This directory must be readable and writable for the user who performs FCBCRYPTO software
installation. This directory must be readable for the Oracle database binaries’ owner.

• l_DB_SERVICE=orcl sets a database service name to be used in connection process.

• l_DB_HOST=localhost sets a host name to be used in connection process.

• l_DB_PORT=1521 sets a port number to be used in connection process.

• l_PACKAGE_OWNER=system sets a database schema where FCBCRYPTO software will be installed.

• l_PACKAGE_OWNER_PASS=system sets a password for the database schema where FCBCRYPTO
software will be installed.

• l_KEYFILE=key.txt sets a name for the key file where base cryptographic key will be placed.

• l_KEYFILE_CE=key_ce.txt sets a name for the key file where core code signing key will be placed.

• 4l_KEYFILE_DIRECTORY=DATA_PUMP_DIR sets a database directory (not an operating system
directory!) name where l_KEYFILE and l_KEYFILE_CE will be placed. Please refer to the
ALL_DIRECTORIES view for details.

• l_DB_CONNECTION=${l_PACKAGE_OWNER}/${l_PACKAGE_OWNER_PASS}@${l_DB_HOST}:$
{l_DB_PORT}/${l_DB_SERVICE} simply joins together some previous variables to get a database
connection string to be used by SQL*Plus utility.

d) $ORACLE_HOME environment variable must be setup to provide a correct work of SQL*Plus utility.

e) Oracle listener service must be setup and started. Also l_DB_SERVICE value should be registered in
listener service.

f) $ORACLE_HOME/bin/sqlplus utility must be available via $PATH environment variable.
$ORACLE_HOME/bin/sqlplus is used in FCBCRYPTO software installation process to run SQL scripts.

g) A database user where FCBCRYPTO software is going to be installed (see l_PACKAGE_OWNER variable
from .dbvariables file) must have following grants

• create any context
• drop any context
• create library
• create table
• create procedure
• create sequence
• create trigger

4

 FCBCRYPTO

• create type
• create session
• alter session
• select any dictionary
• read/write on l_KEYFILE_DIRECTORY4 (see .dbvariables file) directory
• execute on SYS.DBMS_CRYPTO8

• execute on SYS.UTL_COMPRESS9

h) Installed and valid, otherwise 7

DATA ENCRYPTION KEY

FCBCRYPTO software provides 5AES(128, 192, 256)10 encryption technique for char, nchar, varchar2,
nvarchar2, string, blob, clob, nclob, raw, long, long raw, bfile data types and modified OTP11 encryption technique
for number, float, date, timestamp data types. Any binary number data types aren’t supported. AES(128, 192,
256) means a 16, 24 or 325 symbol base cryptographic key must be used. FCBCRYPTO software uses the base
cryptographic key as a common key as for AES so for OTP technique. FCBCRYPTO software accepts 3 ways to
generate the base cryptographic key:

 12Step 1.
 …
 a. generation by hands (without whitespaces please)
 b. auto-generation by fcbcrypto/bin/../bin/pwgen.sh13 utility
 c. auto-generation by dd if=/dev/urandom bs=16(24,32) count=1 2>/dev/null |
openssl14 base64 | sed s/[=O/\]//g | cut -b1-16(24,32) | tee
 d. skip any generation and use existed file ((choose this option if you want to
preserve existed key file)

An example of successful base cryptographic key generation:

15>>>>>> Keyfile is -rw-r--r--. 1 oracle dba 17 Feb 2 12:35
/ora01/app/oracle/admin/orcl/dpdump/key.txt
>>>>>> Key is V4BsPz2zW9HVMC3P

The base cryptographic key is a minimum you need to have to perform data encryption/decryption.

Because of before encryption data get conversion (excepting bfile, number, float, date and timestamp types) to
AL32UTF8 format, FCBCRYPTO encrypted data can be migrated (for example via Oracle impdp/expdp utility) to
the database with a different character set without any symbol corruptions.

8 DBMS_CRYPTO
9 UTL_COMPRESS
10 Advanced Encryption Standard
11 One-time pad
12 an example from installation process
13 Pronounceable password generator . fcbcrypto/bin/pwgen.sh script calls pre-build OS dependent pwgen utility.
14 General-purpose cryptography library
15 an example from installation process

5

 FCBCRYPTO

https://www.openssl.org/
https://github.com/jbernard/pwgen
https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://docs.oracle.com/database/121/ARPLS/u_compr.htm#ARPLS381
https://docs.oracle.com/database/121/ARPLS/d_crypto.htm

CORE CODE SIGNING

Core code signing is a FCBCRYPTO software feature starting from v. 1.2.379. The reason of that feature’s
presence is preventing FCBCRYPTO software unauthorized execution. How is it made? When you download
FCBCRYPTO software from web site, the main part of software, i.e. PKG_FCBCRYPTO package, is fully valid,
but dysfunctional. This is because of a very small non-executable encrypted part of PKG_FCBCRYPTO package
is located at the TBL_FCBCRYPTO_CE table in B_CORE blob field. That small non-executable encrypted part
is the unsigned core code. Without the executable, i.e. signed, core code, PKG_FCBCRYPTO package, staying
valid from the PL/SQL language point of thew view, can’t perform any operations. To make unsigned core code
signed and executable, when you perform initial FCBCRYPTO software’s installation, you’re asked for some
steps (in real installation between these steps can be placed other steps):

a.

CORE CODE SIGNING:

Hereafter /.../key_ce.txt file will be used for CORE CODE signing. Do you want to
create and fill it on your own or auto generate it (file will be created and auto-
generated key will be inserted into it)?

 a. generation by hands (without whitespaces please)
 b. auto-generation by /home/oracle/crypt/aes/bin/../bin/pwgen.sh utility
 c. auto-generation by dd if=/dev/urandom bs=32 count=1 2>/dev/null | openssl
base64 | sed s/[=O/\]//g | cut -b1-32 | tee
 d. skip any generation and use existed file (choose this option if CODE SIGNING
was once done)

As a result of any of your choices from above you must have key_ce.txt key file (see l_KEYFILE_CE variable
from .dbvariables file) in l_KEYFILE_DIRECTORY4. key_ce.txt key contains a key for the core code signing

b.

Continue to create primary objects? (y/n)y

If it's a fresh installation please answer 'yes' to re-|create tbl_FCBCRYPTO_CE
table. If it's not a fresh installation and you already have tbl_FCBCRYPTO_CE
table with the signed core code please answer 'no'. See please more details at
/home/oracle/crypt/aes/sql/../doc/FCBCryptoUNIXInstallationAndUserGuide.pdf file.
Thus 'yes' means primary objects and tbl_FCBCRYPTO_CE table will be re-|created.
'no' means primary objects will be re-|created, but tbl_FCBCRYPTO_CE table will
remain as is.

Continue? (y/n)

c.

6

 FCBCRYPTO

CORE CODE SIGNING:

Next step is about CORE CODE signing by the key.
The key is stored in /.../.../key_ce.txt file. If you are just making software
installation yet one time and you did signing before please skip this step.
Otherwise please answer 'yes' or pkg_FCBCRYPTO package will remain valid but
dysfunctional.

Do CORE CODE signing? (y/n)

Here unsigned core code, stored in TBL_FCBCRYPTO_CE.B_CORE, gets a sign, i.e. a key from the key_ce.txt
file. Also your database gets a “watermark”. The “watermark” is a hidden sign inside the database. The
“watermark” lets detect that core code signing was once done. The “watermark” doesn’t impact any database
features or performance. In case of success and first software installation for you see a message

>>>>>> PL/SQL procedure successfully completed.

>>>>>> Now core code of FCBCRYPTO sofware is signed by the key from the
>>>>>> /.../key_ce.txt key file. This means execution of
>>>>>> FCBCRYPTO sofware is locked on the key and the current database.
>>>>>> In case of the key is lost or tbl_FCBCRYPTO_CE table is truncated or
>>>>>> corrupted pkg_FCBCRYPTO package remains valid but dysfunctional.
>>>>>> Because of that, and it's
>>>>>> very important, please make a backup copy of the
>>>>>> /.../key_ce.txt
>>>>>> key file and the
>>>>>> tbl_FCBCRYPTO_CE
>>>>>> table now. See please more details at
>>>>>> /home/oracle/crypt/aes/sql/../doc/FCBCryptoUNIXInstallationAndUserGuide.pdf
file.

In case more then the one try to make core code signing you see a message

Prev. core code signing occasion detected. Re-signing is impossible and canceled.

Core code signing summary
• core code signing is not about data encryption/decryption
• core code signing prevents unauthorized execution of any PKG_FCBCRYPTO package functions or

procedures relating to data encryption/decryption
• core code signing must be performed during the first FCBCRYPTO software installation only
• core code signing key is located in key_ce.txt key file (see l_KEYFILE_CE variable from .dbvariables

file)
• core code signing key is absolutely different to the base and additional cryptographic keys
• TBL_FCBCRYPTO_CE.B_CORE field contains not executable, i.e. unsigned, encrypted PL/SQL core

code when the installation starts first
• PKG_FCBCRYPTO package is valid, but dysfunctional without executable, i.e. signed, core code from

TBL_FCBCRYPTO_CE.B_CORE
• core code, i.e. TBL_FCBCRYPTO_CE.B_CORE data, get signed, i.e. executed, during successful fist

software installation
• in case of successful fist software installation your database gets a “watermark”
• “watermark” is a hidden sign inside database
• “watermark” doesn’t affect database performance or any database features

7

 FCBCRYPTO

• “watermark” prevents any try to make yet one core code signing
• thus second core signing is impossible by available and legal ways via your copy of FCBCRYPTO

software
• please make backup copies of the core code signing key and the signed

TBL_FCBCRYPTO_CE.B_CORE data right after successful FCBCRYPTO software installation
• in case of signed TBL_FCBCRYPTO_CE.B_CORE data is lost, but the core code signing key is not you

can get in contact with the FCBCRYPTO software owner, send the the core code signing key and get a
new signed-by-your-key TBL_FCBCRYPTO_CE.B_CORE data

• in case of the core code signing key is lost, but signed TBL_FCBCRYPTO_CE.B_CORE data is not you
can get in contact with the FCBCRYPTO software owner, send the signed
TBL_FCBCRYPTO_CE.B_CORE data and get a new core code signing key

How core code signing works

• you perform initialization procedure from KEY MANAGEMENT chapter.
• initialization procedure reads a key from the key_ce.txt key file, encrypts the key and places it into in-

memory context
• initialization procedure reads signed encrypted PL/SQL code from TBL_FCBCRYPTO_CE.B_CORE

and places it into in-memory context
• initialization procedure detects a database “watermark” presence
• if database “watermark” is present, a key from key file and a key from TBL_FCBCRYPTO_CE.B_CORE

are equal then authorization passed successfully and PKG_FCBCRYPTO package functions or
procedures can encrypt or decrypt data.

• if the condition above is not complied, PKG_FCBCRYPTO package functions or procedures can’t
encrypt or decrypt data.

BFILE ENCRYPTION

BFILE stands for LOB data objects stored in operating system files, outside the database tablespaces.
FCBCRYPTO software provides a way to encrypt and decrypt BFILE’s. For that OpenSSL toolkit is used. A quick
OpenSSL toolkit presence verifying can be done as

$ openssl version
OpenSSL 1.0.1e-fips 11 Feb 2013

Also OpenSSL usage means a need to have a “bridge” module to connect an OpenSSL utility and an Oracle
database. FCBCRYPTO software provides two kind of the “bridge” modules: a module written in C language and
a module written in JAVA language. During FCBCRYPTO software installation you can choose any of them. The
“bridge” modules are provided as the source code files. That means you can examine source files, edit them and
compile them in case of your needs.

If you choose C language “bridge” module then module will be built from scratch by C compiler into a shared
library and copied to the l_EXT_LIB_DIRECTORY (see .dbvariables file)16. Also EXTPROC_DLLS=ANY entry
will be inserted into $ORACLE_HOME/hs/admin/extproc.ora file.

If you choose JAVA language “bridge” module two JAVA database objects will be created inside the database.

16 see src/extlilb/fcbcrypto.sh file how it’s made

8

 FCBCRYPTO

https://www.openssl.org/

Please look at/inside the files for more details:

• fcbcrypto/sql/cre_jsr_fcbcrypto.sql
• fcbcrypto/sql/cre_jsr_fcbcrypto_feedback.sql
• fcbcrypto/sql/cre_lib_fcbcrypto.sql
• fcbcrypto/src/fcbcrypto.c

Thus hardware, operating system and database prerequisites to successfully use BFILE encryption are:

a) UNIX like operating systems, i.e. IBM AIX, SUN/Oracle Solaris, Linux, HP HP-UX17

b) installed and valid OpenSSL toolkit
c) openssl utility is available via $PATH environment variable
d) C language compiler to build C language “bridge” module or installed and valid Oracle Database Java

subsystem to use JAVA language “bridge” module

 18Step 4.

Now there is a need to choose a setup connectivity between Oracle database and
/usr/bin/openssl OpenSSL toolkit binary. Please choose one of below:

a. Oracle database heterogeneous service i.e. entry SET EXTPROC_DLLS=ANY
will be inserted into
/ora01/app/oracle/product/12.1.0/server_se_1/hs/admin/extproc.ora file and
fcbcrypto/bin/../src/extlib/fcbcrypto.so library will be built from scratch and
copied to /tmp catalog

b. Recommended. Oracle database Java subsystem i.e Java database source
object will be created
 c. Do nothing and skip this setup

If a C language “bridge” module was selected19

>>>>>> Oracle database heterogeneous service connectivity has been selected.

Please make sure Oracle database binaries' owner has read,write permission on
/tmp20 directory and C compiler is available

Continue? (y/n)y

>>>>>> Building /tmp/fcbcrypto.so shared library from scratch via
fcbcrypto/bin/../src/extlib/fcbcrypto.sh call ...

>>>>>> gcc (GCC) 4.4.7 20120313 (Red Hat 4.4.7-18) GNU C/C++ compiler for Linux is
running...

>>>>>> -rwxr-xr-x. 1 ***** dba 6819 Feb 5 13:36 /tmp/fcbcrypto.so
>>>>>> /tmp/fcbcrypto.so: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
dynamically linked, not stripped

17 BFILE encryption wasn’t tested on HP HP-UX but it should work
18 an example from installation process
19 Linux example
20 /tmp value comes from l_EXT_LIB_DIRECTORY variable from .dbvariables file

9

 FCBCRYPTO

>>>>>> Hereafter /tmp/fcbcrypto.so shared library will be used

If a JAVA language “bridge” module was selected and due to BFILE encryption is based on the external
operating system utilities’ calls there is a need to grant external operating system utilities’ calls to the
FCBCRYPTO software owner (see l_PACKAGE_OWNER variable from .dbvariables file), i.e.

21>>>>>> Please don't forget to execute under sys account:

SQL> call dbms_java.grant_permission(upper('FCBCRYPTO software owner'),
'SYS:java.io.FilePermission', '/usr/bin/openssl', 'execute');
SQL> call dbms_java.grant_permission(upper('FCBCRYPTO software owner'),
'SYS:java.io.FilePermission', '/bin/rm', 'execute');
SQL> call dbms_java.grant_permission(upper('FCBCRYPTO software owner'),
'SYS:java.io.FilePermission', '/bin/mv', 'execute');
SQL> call dbms_java.grant_permission(upper('FCBCRYPTO software owner'),
'SYS:java.io.FilePermission', '/bin/cat', 'execute');
SQL> call dbms_java.grant_permission(upper('FCBCRYPTO software owner'),
'SYS:java.io.FilePermission', '/usr/bin/wc', 'execute');
SQL> call dbms_java.grant_permission(upper('FCBCRYPTO software owner'),
'SYS:java.io.FilePermission', '/usr/bin/diff', 'execute');

If your database is 12c or 11g and 19721304 patch was applied please make sure JAVA DEVELOPMENT
feature (if it is) is allowed

SQL> select upper(JAVA_DEV_ALLOWED) from sys.java_dev_status;

UPP

YES

If it’s not allowed please allow it

SQL> exec dbms_java_dev.enable;

Without allowed JAVA DEVELOPMENT feature (if it is) JAVA language “bridge” module doesn’t work on 12c at
least.

There are four BFILE functions:

• fnc_encbfile_bfibfo_disk (p_bfile in bfile) return bfile
• fnc_decbfile_bfibfo_disk (p_bfile in bfile) return bfile
• fnc_decbfile_bfibo (p_bfile in bfile) return blob
• fnc_is_bfile_encrypted_disk (p_bfile in bfile) return simple_integer

BFILE to BFILE encryption via PKG_FCBCRYPTO.FNC_ENCBFILE_BFIBFO_DISK function

If
• openssl utility is present
• BFILE encryption/decryption is activated22

21 an example from installation process
22 see g_bfile row in TBL_FCBCRYPTO_SETTING table from SETTINGS chapter

10

 FCBCRYPTO

• BFILE is not null
• BFILE was not encrypted by FCBCRYPTO software, i.e. first 8 symbols are not equal to Salted__

then steps below are performed when PKG_FCBCRYPTO.FNC_ENCBFILE_BFIBFO_DISK function is called:

• insert processing info into TBL_FCBCRYPTO_BFILE table if

SQL> select count(*)
 from TBL_FCBCRYPTO_SETTING
 where S_NAME= 'g_bfile_process_tracking' and S_ACTIVE= 'Y';

is equal to 1
• remove BFILE.be23.sha1 file
• remove BFILE.ae24.sha1 file
• calculate BFILE check sum by openssl utility and write out it to BFILE.be.sha125 file
• BFILE file encryption by openssl utility into BFILE.session_id temporary file
• remove BFILE file
• move BFILE.session_id file to BFILE file
• calculate BFILE file check sum by openssl utility and write out it to BFILE.ae.sha1
• insert processing info into TBL_FCBCRYPTO_BFILE table if

SQL> select count(*)
 from TBL_FCBCRYPTO_SETTING
 where S_NAME= 'g_bfile_process_tracking' and S_ACTIVE= 'Y';

is equal to 1

After encryption BFILE related files look like

-rw-r--r--. 1 oracle dba 93 Feb 8 09:40 BFILE.be.sha1
-rw-r--r--. 1 oracle dba 93 Feb 8 09:40 BFILE.ae.sha1
-rw-r--r--. 1 oracle dba 1075584 Feb 8 09:40 BFILE

BFILE to BFILE decryption via PKG_FCBCRYPTO.FNC_DECBFILE_BFIBFO_DISK function

If
• openssl utility is present
• BFILE encryption/decryption is activated26

• BFILE is not null
• BFILE was encrypted by FCBCRYPTO software, i.e. first 8 symbols are equal to Salted__

then steps below are performed when PKG_FCBCRYPTO.FNC_DECBFILE_BFIBFO_DISK function is called:

• Insert processing info into TBL_FCBCRYPTO_BFILE table if

SQL> select count(*)
 from TBL_FCBCRYPTO_SETTING
 where S_NAME= 'g_bfile_process_tracking' and S_ACTIVE= 'Y';

23 “be” stands for “before encryption”
24 “ae” stands for “after encryption”
25 sha1 relates to g_digest row in TBL_FCBCRYPTO_SETTING from SETTINGS chapter
26 see g_bfile row in TBL_FCBCRYPTO_SETTING table from SETTINGS chapter

11

 FCBCRYPTO

is equal to 1
• remove BFILE.bd27.sha1 file
• remove BFILE.ad28.sha1 file
• calculate BFILE check sum by openssl utility and write out it to BFILE.bd.sha129 file
• BFILE file decryption by openssl utility into BFILE.session_id temporary file
• remove BFILE file
• move BFILE.session_id file to BFILE file
• calculate BFILE file check sum by openssl utility and write out it to BFILE.ad.sha1
• if check sums before encryption and after decryption is equal, i.e. BFILE.be.sha1 file is equal to

BFILE.ad.sha1 file then processing info is inserted into TBL_FCBCRYPTO_BFILE table if

SQL> select count(*)
 from TBL_FCBCRYPTO_SETTING
 where S_NAME= 'g_bfile_process_tracking' and S_ACTIVE= 'Y';

is equal to 1
• if check sums before encryption and after decryption is not equal, i.e. BFILE.be.sha1 file is not equal to

 BFILE.ad.sha1 file an exception rises

ORA-20001 Something goes wrong! Check sums are different before encryption and after decryption...

After decryption BFILE related files look like

-rw-r--r--. 1 oracle dba 93 Feb 8 09:40 BFILE.be.sha1
-rw-r--r--. 1 oracle dba 93 Feb 8 09:40 BFILE.ae.sha1
-rw-r--r--. 1 oracle dba 1075562 Feb 8 09:40 BFILE
-rw-r--r--. 1 oracle dba 93 Feb 8 09:40 BFILE.bd.sha1
-rw-r--r--. 1 oracle dba 93 Feb 8 09:40 BFILE.ad.sha1

BFILE to BLOB decryption via PKG_FCBCRYPTO.FNC_DECBFILE_BFIBO function

• BFILE to BFILE decryption via PKG_FCBCRYPTO.FNC_DECBFILE_BFIBFO_DISK function

• if BFILE returned value is not null, i.e. BFILE was encrypted before and it has been decrypted now
• open BFILE
• load BFILE into BLOB
• return BLOB
• BFILE to BFILE encryption via PKG_FCBCRYPTO.FNC_ENCBFILE_BFIBFO_DISK function

• if BFILE returned value is null, i.e. BFILE wasn’t encrypted
• open BFILE
• load BFILE into BLOB
• return BLOB

BFILE is encrypted or it’s not via PKG_FCBCRYPTO.FNC_IS_BFILE_ENCRYPTED_DISK function

Function returns “0” if BFILE is not encrypted and “1” if BFILE is encrypted. BFILE is encrypted if first 8 symbols
are equal to Salted__

27 “bd” stands for “before decryption”
28 “ad” stands for “after decryption”
29 sha1 relates to g_digest row in TBL_FCBCRYPTO_SETTING from SETTINGS chapter

12

 FCBCRYPTO

SECURITY TOKEN ENCRYPTION

Security token (in FCBCRYPTO software context) is any physically attached to USB port inexpensive device on
the host where Oracle database is placed. That can be a memory stick, card reader, web camera, external hard
drive, mouse or keyboard, even a mobile phone30. Security Token Encryption (in FCBCRYPTO software context)
means usage unique security token hardware information as an additional cryptographic key to improve
cryptographic strength. STE can not be used stand alone. STE is used only with a base cryptographic key
together.

How it works:

• Base cryptographic key places at the key file (see g_keyfile in TBL_FCBCRYPTO_SETTING table) and
at the key file directory (see g_keyfile_dir in TBL_FCBCRYPTO_SETTING table)

• Security token is attached to the database host
• When initialization process runs (see KEY MANAGEMENT chapter for more details), FCBCRYPTO

software

• reads base cryptographic key from the key file 13

• reads security token hardware information
• generates additional security token based cryptographic key
• mixes two keys and gets the real cryptographic key

• Real cryptographic key is used to encrypt/decrypt data

STE usage advantages

• stolen data and stolen key file31 with the base cryptographic key don’t mean encrypted data can be
decrypted

• stolen data and stolen security token don’t mean encrypted data can be decrypted, especially when key
file is not used

• every modern security token has unique combination of hardware information
• security token can not be duplicated
• USB flash drive file system information doesn’t matter if USB flash drive plays security token role

STE usage disadvantages

• lost security token means impossibility to decrypt encrypted data
• Linux operating system only
• lsusb utility must be installed, valid and available via $PATH variable
• usage of security tokens with the simple serial numbers should be avoided

Also STE usage means a presence of the installed and valid Oracle Database Java subsystem because lsusb
utility’s call is performed via JAVA “bridge” module only. Thus hardware, operating system and database
prerequisites to successfully use STE are:

a) Linux operating system
b) Oracle Database Java subsystem is installed and valid
c) presence of lsusb utility with a 4755 file permission

30 mouse and keyboard aren’t recommended because of lack unique hardware information in most models
31 key file usage can be omitted to harden security. See KEY MANAGEMENT chapter how to do that

13

 FCBCRYPTO

d) lsusb utility is available via $PATH environment variable
e) USB device can be detected by lsusb utility
f) USB device has a vendor id, a product id and an acceptable serial number information32

g) FCBCRYPTO database user is granted to run lsusb utility

$ ls -la `which lsusb`
-rwsr-xr-x. 1 root root 106K May 11 2016 /usr/bin/lsusb*

$ stat -c "%a" `which lsusb`
4755

$ lsusb
Bus 002 Device 016: ID 054c:01bd Sony Corp. MRW62E Multi-Card Reader/Writer
Bus 004 Device 002: ID 046d:c002 Logitech, Inc. M-BA47 [MouseMan Plus]
Bus 004 Device 003: ID 046d:c31c Logitech, Inc. Keyboard K120

$ lsusb -d 054c:01bd -v
 ...
 idVendor 0x054c Sony Corp.
 idProduct 0x01bd MRW62E Multi-Card Reader/Writer
 ...
 iSerial 3 0000000B736F <------- good serial number

$ lsusb -d 046d:c002 -v
 ...
 idVendor 0x046d Logitech, Inc.
 iProduct 2 USB-PS/2 Mouse M-BA47
 ...
 iSerial 0 <------- no serial number at all

$ lsusb -d 0bb4:2008 -v
...
 idVendor 0x0bb4 HTC (High Tech Computer Corp.)
 idProduct 0x2008 Android Phone via MTP [Wiko Cink Peax 2]
 ...
 iSerial 4 0123456789ABCDEF <--- worst serial number

$ lsusb -d 0930:6544 -v
...
 idVendor 0x0930 Toshiba Corp.
 idProduct 0x6544 TransMemory-Mini / Kingston DataTraveler
 ...
 iSerial 4 50E549C6931BC171E906AE9B <--- best serial number

An example of successful STE setup:

33Re-detecting acceptable USB attached devices...

32 vendor id and product id aren’t used as a part of additional cryptographic key. Serial number is used but that doesn’t
mean additional cryptographic key consists of the serial number only.

33 an example from installation process

14

 FCBCRYPTO

Hardware ID(HID) : Serial Number(SN) : USB Device Name

 054c:01bd : 0000000B736F : Sony Corp. MRW62E Multi-Card Reader/Writer

Please enter Hardware ID(HID) you want to use: 054c:01bd

>>>>>> Correct HID entered. SN is present.
>>>>>> STE feature enabled.
>>>>>> Please don't forget to execute under sys account:

SQL> call dbms_java.grant_permission(upper('FCBCRYPTO software owner'),
'SYS:java.io.FilePermission', '/usr/bin/lsusb', 'execute');

SETTINGS

FCBCRYPTO software has a lot of settings. All of them get values during FCBCRYPTO software installation
process, but after process’ finish you can adjust most of them. All settings are placed at
TBL_FCBCRYPTO_SETTING table. Let’s see:

S_ACTIVE S_NAME S_VALUE S_VALUE_2 S_DESCRIPTION

Y g_encryption_type 4358 165 SYS.DBMS_CRYP
TO.ENCRYPT_AE
S128 +
SYS.DBMS_CRYP
TO.CHAIN_CBC +
SYS.DBMS_CRYP
TO.PAD_PKCS5

N g_encryption_type 4359 245 SYS.DBMS_CRYP
TO.ENCRYPT_AE
S192 +
SYS.DBMS_CRYP
TO.CHAIN_CBC +
SYS.DBMS_CRYP
TO.PAD_PKCS5

N g_encryption_type 4360 325 SYS.DBMS_CRYP
TO.ENCRYPT_AE
S256 +
SYS.DBMS_CRYP
TO.CHAIN_CBC +
SYS.DBMS_CRYP
TO.PAD_PKCS5

Y g_keyfile_dir DATA_PUMP_DIR4 directory (see
ALL_DIRECTORIE

15

 FCBCRYPTO

S_ACTIVE S_NAME S_VALUE S_VALUE_2 S_DESCRIPTION

S view) where
keyfile is placed

Y g_keyfile key.txt keyfile name

Y g_keyfile_ce key_ce.txt core code
encryption keyfile
name

Y g_mv /bin/mv utility to move
(rename) files

Y g_rm /bin/rm utility to remove
files or directories

Y g_diff /usr/bin/diff utility to compare
files line by line

Y g_wc /usr/bin/wc utility to print
newline, word, and
byte counts for
each file

Y g_cat /bin/cat utility to
concatenate files
and print on the
standard output

Y g_digest sha1 OpenSSL toolkit
function to generate
and verify digital
signatures

Y g_bytes_per_symbol 2 bytes per symbol
for clob operation

Y g_os Linux local operating
system name

Y g_context global global (SGA based)
or local (PGA
based) context
access

Y g_str_deflation_ratio 6 0 deflation is off, 1-
fast ...9-best is on
for varchar2 and
nvarchar2 data type

Y g_raw_deflation_ratio 6 0 deflation is off, 1-
fast ...9-best is on
for raw data type

16

 FCBCRYPTO

S_ACTIVE S_NAME S_VALUE S_VALUE_2 S_DESCRIPTION

Y g_blob_deflation_ratio 6 0 deflation is off, 1-
fast ...9-best is on
for blob data type

Y g_clob_deflation_ratio 6 0 deflation is off, 1-
fast ...9-best is on
for clob data type

Y g_service_function_user_list SYSTEM user list who
authorized are to
run service
routines: prc_init,
prc_deinit,
fnc_usb_ste_prese
nt

Y g_bfile_process_tracking g_bfile_process_tracking in case of using
please make sure
package owner has
select, insert grants
on
TBL_FCBCRYPTO
_BFILE table

Y g_bfile /usr/bin/openssl 128 BFILE encryption
via utility from
OpenSSL
cryptography and
SSL/TLS toolkit
https://www.openssl
.org/

Y g_openssl_connection internal_java_source19 jsr_fcbcrypto database object
name

Y g_lsusb /usr/bin/lsusb utility for displaying
information about
USB buses in the
system and the
devices connected
to them

Y g_ste 0B72F364FDE4766 STE feature

Y g_encrypted_context_base_
key

Base key is stored
in context as
encrypted

Y g_encrypted_context_add_k
ey

Additional key is
stored in context as
encrypted

17

 FCBCRYPTO

g_encryption_type is a kind of AES encryption to use. De-/activate any of them via “Y” or “N” value in the
S_ACTIVE field. Only one “Y” value must be set. S_VALUE_2 is a base cryptographic key size5. Please change
neither S_VALUE nor S_VALUE_2 by hands.

g_keyfile_dir is a l_KEYFILE_DIRECTORY4 value from .dbvariables file. S_ACTIVE value is always “Y”.

g_keyfile is a l_KEYFILE value from .dbvariables file. S_ACTIVE value is always “Y”.

g_keyfile_ce is a l_KEYFILE_CE value from .dbvariables file. S_ACTIVE value is always “Y”.

g_mv, g_rm, g_diff, g_wc, g_cat, g_lsusb are paths to the correspondent utilities. Paths come
from .osvariables file. S_ACTIVE value is always “Y”.

g_digest is an OpenSSL toolkit function to generate and verify digital signatures of encrypted/decrypted
BFILE’s. Default value is sha134. Change it if you need. S_ACTIVE value is always “Y”.

g_bytes_per_symbol is a deprecated variable

g_os is an auto-detected operating system common name. Please change in case of migration to the other OS
only. S_ACTIVE value is always “Y”.

g_context can have global (SGA based) or local, i.e. session only (PGA based) context access35 value. Default
is global. Change it if you need. S_ACTIVE value is always “Y”.

g_str_deflation_ratio, g_raw_deflation_ratio, g_blob_deflation_ratio, g_clob_deflation_ratio is
compression quality (for the correspondent data types) in the range from 0 to 9, i.e. 0 = no compression, 1 =
fast compression, 9 = best compression. Default value is 6. Change it if you need. S_ACTIVE value is always
“Y”. See DATA COMPRESSION chapter.

g_service_function_user_list 22 lists users who authorized are to run key management service routines:
PKG_FCBCRYPTO.PRC_INIT procedure, PKG_FCBCRYPTO.PRC_DEINIT procedure,
PKG_FCBCRYPTO.FNC_USB_STE_PRESENT function (see more details in KEY MANAGEMENT chapter).
Default value is a FCBCRYPTO software owner (see l_PACKAGE_OWNER from .dbvariables file). You can add
anyone or remove all of them. S_ACTIVE value is always “Y”.

g_bfile36. When S_ACTIVE value is “Y” then S_VALUE is a path to openssl utility (if it’s present) and BFILE
encryption (see BFILE ENCRYPTION chapter) is active. When S_ACTIVE value “N” then S_VALUE is still the
path to the openssl (if it is present) utility but BFILE encryption is not active.

g_openssl_connection. It it’s present then S_VALUE shows C language “bridge” module or JAVA language
“bridge” module will be used for BFILE encryption (see BFILE ENCRYPTION chapter). S_VALUE_2 shows
database “bridge” module object name. S_ACTIVE is always “Y”. If g_openssl_connection string is not present
this means BFILE encryption is not active.

g_bfile_process_tracking. If BFILE encryption is active bfile encryption steps, i.e. “start”, “processing”, “finish”
will be logged at TBL_FCBCRYPTO_BFILE table. S_ACTIVE value can be “Y” or “N”. Change it if you need. In
case of “Y” please make sure FCBCRYPTO software owner has select, insert grants on
TBL_FCBCRYPTO_BFILE table.

34 a wikipedia article
35 context creation
36 g_bfile S_ACTIVE value has highest priority in order to get BFILE encryption is active or it is not

18

 FCBCRYPTO

https://docs.oracle.com/database/121/SQLRF/statements_5003.htm#SQLRF01202
https://en.wikipedia.org/wiki/SHA-1

g_ste37 When g_ste row is present it contains: a security token hash sum (see SECURITY TOKEN
ENCRYPTION chapter) and S_ACTIVE value is “Y”. This means security token encryption was setup and it is
used. Setup S_ACTIVE value to “N” in order not to use security token encryption. When g_ste row is not present
this means security token encryption wasn’t setup and it is not used. Note: A value you see in S_VALUE field in
the table above is a fake value.

g_encrypted_context_base_key defines to perform (S_ACTIVE = “Y”) or not to perform (S_ACTIVE = “N”)
base cryptographic key context encryption, i.e. if base cryptographic key is Z3Wx!2#@%^&(CCZF in case of
S_ACTIVE = “N” it will be stored as Z3Wx!2#@%^&(CCZF value in context, in case of S_ACTIVE = “Y” it will be
stored as
3E40C84792503556AEC4A88E7AFE383E2CDAB00BDE344C457DA52DDD96F3E203911E2915499CC20C7D
54CBA79A985FCE value.

g_encrypted_context_add_key defines to perform (S_ACTIVE = “Y”) or not to perform (S_ACTIVE = “N”)
additional cryptographic key context encryption.

AFTER INSTALLATION

When installation finishes you have following objects in FCBCRYPTO software schema

• PKG_ FCBCRYPTO package38

• TBL_FCBCRYPTO_CE table39

• FNC_ FCBCRYPTO_HASHTYPE40 function
• LIB_ FCBCRYPTO external library41

• 19JSR_FCBCRYPTO java source42

• JSR_FCBCRYPTO_FEEDBACK java source43

• TBL_FCBCRYPTO_SETTING table44

• TBL_FCBCRYPTO_BFILE table45

PKG_ FCBCRYPTO package is a main part of FCBCRYPTO software. PKG_ FCBCRYPTO package consists of
two parts: a package specification and a wrapped package body.

Correspondent files:

• fcbcrypto/sql/cre_pkg_fcbcrypto.pks
• fcbcrypto/sql/cre_pkg_fcbcrypto.pkb

PKG_ FCBCRYPTO package provides following encryption, decryption and service routines:

CHAR, VARCHAR2, STRING

• function fnc_encvchr (p_data in varchar2, l_custom_deflation in pls_integer default -1) return varchar2

37 g_ste S_ACTIVE value has highest priority in order to get security token encryption is active or it is not
38 PKG_ FCBCRYPTO package validity depends on the all objects below excepting TBL_FCBCRYPTO_BFILE table
39 see CORE CODE SIGNING chapter for more details
40 provides maximum available cryptographic hash algorithm for the current version of Oracle database
41 usage depends on your prev. choice
42 usage depends on your prev. choice
43 usage depends on your prev. choice
44 see SETTINGS chapter for more details
45 table is created in dependency on your choice

19

 FCBCRYPTO

• function fnc_decvchr (p_data in varchar2, l_custom_deflation in pls_integer default -1) return varchar2

NCHAR, NVARCHAR2

• function fnc_encnvch (p_data in nvarchar2, l_custom_deflation in pls_integer default -1) return
nvarchar2

• function fnc_decnvch (p_data in nvarchar2, l_custom_deflation in pls_integer default -1) return
nvarchar2

NUMBER, FLOAT (in -/+9.9*10^36 range)

• function fnc_encnum (l_value in number) return number
• function fnc_decnum (l_value in number) return number

DATE

• function fnc_encdate (l_value in date) return date
• function fnc_decdate (l_value in date) return date

TIMESTAMP WITH OR WITHOUT TIMEZONE46

• function fnc_enctstp (l_value in timestamp / timestamp with time zone) return timestamp / timestamp
with time zone

• function fnc_dectstp (l_value in timestamp / timestamp with time zone) return timestamp / timestamp
with time zone

BLOB

• function fnc_encblob (p_blob in blob, l_custom_deflation in pls_integer default -1) return blob
• function fnc_decblob (p_blob in blob, l_custom_deflation in pls_integer default -1) return blob

CLOB

• function fnc_encclob (p_clob in clob, l_custom_deflation in pls_integer default -1) return clob
• function fnc_decclob (p_clob in clob, l_custom_deflation in pls_integer default -1) return clob

NCLOB

• function fnc_encnclob (p_nclob in nclob, l_custom_deflation in pls_integer default -1) return nclob
• function fnc_decnclob (p_nclob in nclob, l_custom_deflation in pls_integer default -1) return nclob

RAW

• function fnc_encraw (p_raw in raw, l_custom_deflation in pls_integer default -1) return raw
• function fnc_decraw (p_raw in raw, l_custom_deflation in pls_integer default -1) return raw

LONG RAW

• function fnc_enclraw (p_lraw in long raw, l_custom_deflation in pls_integer default -1) return long raw
• function fnc_declraw (p_lraw in long raw, l_custom_deflation in pls_integer default -1) return long raw

LONG

46 encryption is limited by milliseconds, i.e. microseconds and less aren’t encrypted

20

 FCBCRYPTO

• function fnc_enclong (p_long in long, l_custom_deflation in pls_integer default -1) return long
• function fnc_declong (p_long in long, l_custom_deflation in pls_integer default -1) return long

BFILE is encrypted or it’s not. See BFILE ENCRYPTION chapter

• function fnc_is_bfile_encrypted_disk (p_bfile in bfile) return simple_integer

BFILE. See BFILE ENCRYPTION chapter

• function fnc_encbfile_bfibfo_disk (p_bfile in bfile) return bfile
• function fnc_decbfile_bfibfo_disk (p_bfile in bfile) return bfile

BFILE to BLOB. See BFILE ENCRYPTION chapter

• function fnc_decbfile_bfibo (p_bfile in bfile) return blob

Key management routines. See KEY MANAGEMENT chapter

• procedure prc_init (l_in_key in varchar2 default null)
• procedure prc_deinit
• function fnc_usb_ste_present (deinit_if_missed simple_integer default 0, init_if_reattached

simple_integer default 0) return simple_integer

Integrity checking routines. See TAMPER-PROOFING chapter

• function fnc_intergrity return varchar2

“enc” in routine names stands for encryption. “dec” in routine names stands for decryption

l_custom_deflation input parameter means compression ratio in the range from 0=no compression, 1=fastest
compression to 9=best compression. Omitting, i.e. using default -1 value, means correspondent
g_*_deflation_ratio value from TBL_FCBCRYPTO_SETTING table (see SETTINGS chapter) will be used.

KEY MANAGEMENT

FCBCRYPTO software provides centralized in-memory key management process. Key management
initialization is a mandatory first step to start data encryption/decryption47. Cryptographic keys or cryptographic
key traces aren’t stored or presented in the constant database objects like tables. Cryptographic keys are
distributed to the FCBCRYPTO decryption/encryption functions via Oracle database in-memory object only. That
object is context (a set of application-defined attributes that validates and secures an application).
Encryption/decryption can’t be performed without in-memory loaded cryptographic keys. How it works in details.

Initialization

Database user having privileges to execute PKG_FCBCRYPTO package runs PKG_FCBCRYPTO.PRC_INIT

47 encryption/decryption PKG_FCBCRYPTO package routines don’t work without key management initialization

21

 FCBCRYPTO

procedure. PKG_FCBCRYPTO.PRC_INIT procedure accepts either

• a null input parameter and then procedure starts to read base cryptographic key from the key file (see
g_keyfile in TBL_FCBCRYPTO_SETTING table) from the key file directory (see g_keyfile_dir in
TBL_FCBCRYPTO_SETTING table) or

• a 16, 24 or 32 symbol base cryptographic key as an input parameter48

SQL> exec pkg_fcbcrypto.prc_init;
or
SQL> exec pkg_fcbcrypto.prc_init('cHBmNz7cfTqH5t82VlXvjd8LdL45XccL');

If user is not in allowed-to-run-key-magement-routine-user list, i.e.

SQL> select S_VALUE as USERS_ALLOWED_TO_RUN_KEY_MANAGEMENT_ROUTINES
 from TBL_FCBCRYPTO_SETTING
 where S_NAME = ‘g_service_function_user_list’ and S_ACTIVE=’Y’

then PKG_FCBCRYPTO.PRC_INIT stops initialization49 and a message

User is not authorized to run prc_init routine.

appears.

Otherwise PKG_FCBCRYPTO context is re-/created with a global or local access. Context access comes from

SQL> select S_VALUE as CONTEXT_ACCESS
 from TBL_FCBCRYPTO_SETTING
 where S_NAME = ‘g_context’ and S_ACTIVE=’Y’

After context creation context is filled out by the cryptographic related variables and values. Next step is a
security token encryption setup. If security token encryption was activated, i.e.

SQL> select (case when count(*)= 1
 then ‘STE is active’
 else ‘STE is not active’
 end) as STE_STATUS
 from TBL_FCBCRYPTO_SETTING
 where S_NAME = ‘g_ste’ and S_ACTIVE=’Y’

then security token hash sum is calculated. If security token hash sum is equal to this one

SQL> select S_VALUE as DEFINED_DURING_INSTALLATION_SECURITY_TOKEN_HASHSUM
 from TBL_FCBCRYPTO_SETTING
 where S_NAME = ‘g_ste’ and S_ACTIVE=’Y’

then additional security token based cryptographic key is calculated. Otherwise, i.e. hash sums are different,
because attached security token is wrong, nothing appears. If there is no attached security token at all, a

48 This means you don’t need to worry key file (see g_keyfile in TBL_FCBCRYPTO_SETTING table) can be stolen
49 Why does that user list exist? Because you may have no intention to provide key management routine executable rights

to the user already having executable grant on PKG_FCBCRYPTO package.

22

 FCBCRYPTO

warning appears

initializing STE...

Do not you forget to attach a proper USB device `cause setting table contains
activated STE feature?

Context is/is not filled out by the cryptographic related variables and values again in dependence on the previous
results.

Next. If TBL_FCBCRYPTO_BFILE table is presented then it is truncated.

Here PKG_FCBCRYPTO.PRC_INIT procedure finishes key management initialization. This means all
encryption/decryption PKG_FCBCRYPTO package routines (see AFTER INSTALLATION chapter) are ready to
be used.

An example of successful key management initialization SQL*Plus output by PKG_FCBCRYPTO.PRC_INIT
procedure

PKG_FCBCRYPTO context is being re|-created...
50signed core code is being initialized...
51reading setting table...
52initializing STE...
53reading ce key file...
reading key file...
context filled up...
bfile table is being truncated...
init done

PL/SQL procedure successfully completed.

What if initialization was not performed or performed unsuccessfully and data encryption/decryption functions are
called? An exception rises

ORA-06502: PL/SQL: numeric or value error

Please have a note FCBCRYPTO software doesn’t monitor base cryptographic key presence, i.e. a
presence of the key file (see g_keyfile in TBL_FCBCRYPTO_SETTING table) at the key file directory (see
g_keyfile_dir in TBL_FCBCRYPTO_SETTING table), in a real-time mode. Also that means the key file is
present or it is not, the key file directory is present or it is not, a security token is present or it is not,
FCBCRYPTO software, if it was initialized successfully once, knows nothing about missed key, missed catalog
or missed security token, i.e. in-memory context still can contain cryptographic information. Only launched
PKG_FCBCRYPTO.PRC_INIT or PKG_FCBCRYPTO.FNC_USB_STE_PRESENT procedures can check
missed stuff.

50 see CORE CODE SIGNING chapter for details
51 see SETTINGS chapter for details
52 see SECURITY TOKEN ENCRYPTION chapter for details
53 see CORE CODE SIGNING chapter for details

23

 FCBCRYPTO

Deinitialization

PKG_FCBCRYPTO.PRC_DEINIT procedure simply erases previously filled cryptographic in-memory context
information and delete in-memory context. After that any attempt to call PKG_FCBCRYPTO package
encryption/decryption functions to encrypt/decrypt data gives only an error like

ORA-06502: PL/SQL: numeric or value error

An example of successful key management deinitialization SQL*Plus output by
PKG_FCBCRYPTO.PRC_DEINIT procedure

PKG_FCBCRYPTO context de-initialized

PL/SQL procedure successfully completed.

If user is not in a allowed-to-run-key-magement-routine-user list, i.e.

SQL> select S_VALUE as USERS_ALLOWED_TO_RUN_KEY_MANAGEMENT_ROUTINES
 from TBL_FCBCRYPTO_SETTING
 where S_NAME = ‘g_service_function_user_list’ and S_ACTIVE=’Y’

then PKG_FCBCRYPTO.PRC_DEINIT procedure cancels deinitialization54 and a message appears.

User is not authorized to run prc_deinit routine.

Security token presence verifying

PKG_FCBCRYPTO.FNC_USB_STE_PRESENT function is assigned for that. There are two input parameters:
deinit_if_missed and init_if_reattached. Zero input parameters mean to do nothing.

Security token function returns deinit_if_missed = 1 init_if_reattached = 1

missed 0 PKG_FCBCRYPTO.PRC_DEINIT

present 1 PKG_FCBCRYPTO.PRC_INIT

unknown status 587

When PKG_FCBCRYPTO.FNC_USB_STE_PRESENT function is called and deinit_if_missed=1 and there is
no an attached security token with a hardware hash sum that is equal to the hash sum from
PKG_FCBCRYPTO_SETTING table, i.e.

SQL> select S_VALUE
 from TBL_FCBCRYPTO_SETTING
 where S_NAME = 'g_ste' and S_ACTIVE='Y';

S_VALUE

54 Why does that user list exist? Because you may have no intention to provide key management routine executable rights
to the user already having executable grant on PKG_FCBCRYPTO package.

24

 FCBCRYPTO

--
0B72F364FDE4766E9B528A6F07AAA26F0F9FC589A48BE

then PKG_FCBCRYPTO.PRC_DEINIT is called.

When PKG_FCBCRYPTO.FNC_USB_STE_PRESENT function is called, init_if_reattached=1 and some
security token is attached PKG_FCBCRYPTO.FNC_USB_STE_PRESENT function calls lsusb utility to read
security token hardware information and to generate a current security token hash sum. After that function
performs comparison of the current security token hardware information hash sum and a hash sum storing in
PKG_FCBCRYPTO_SETTING table, i.e.

SQL> select S_VALUE
 from TBL_FCBCRYPTO_SETTING
 where S_NAME = 'g_ste' and S_ACTIVE='Y';

S_VALUE
--
0B72F364FDE4766E9B528A6F07AAA26F0F9FC589A48BE

If two hash sums are matched PKG_FCBCRYPTO.PRC_INIT procedure is called. If they aren’t matched neither
warning nor error nor exception appears.

In any case PKG_FCBCRYPTO.FNC_USB_STE_PRESENT function returns either “0” when no security token
attached or a wrong security stick attached, or “1” when a correct security token attached, or ‘587’.
If user isn’t authorized to run PKG_FCBCRYPTO.FNC_USB_STE_PRESENT function, i.e.
user is out of

SQL> select S_VALUE as USERS_ALLOWED_TO_RUN_KEY_MANAGEMENT_ROUTINES
 from TBL_FCBCRYPTO_SETTING
 where S_NAME = ‘g_service_function_user_list’ and S_ACTIVE=’Y’

a message

User is not authorized to run fnc_usb_ste_present routine.

appears and “587” returns.

Have a note please. PKG_FCBCRYPTO.FNC_USB_STE_PRESENT function does not call
PKG_FCBCRYPTO.PRC_INIT procedure if function detects PKG_FCBCRYPTO context’s presence, i.e.
PKG_FCBCRYPTO.PRC_DEINIT procedure wasn’t called before by the any way. Thus the most suitable ways
to call PKG_FCBCRYPTO.FNC_USB_STE_PRESENT function are

SQL> select PKG_FCBCRYPTO.FNC_USB_STE_PRESENT(1,1) from dual;
or
SQL> select PKG_FCBCRYPTO.FNC_USB_STE_PRESENT(0,0) from dual;
or
SQL> select PKG_FCBCRYPTO.FNC_USB_STE_PRESENT from dual;

Key management summary

• base cryptographic key comes from the key file (see g_keyfile_dir in TBL_FCBCRYPTO_SETTING

25

 FCBCRYPTO

table) and the key file directory
(see g_keyfile_dir in TBL_FCBCRYPTO_SETTING table)

• base cryptographic key can come as an input parameter of PKG_FCBCRYPTO.PRC_INIT procedure
call also

• additional cryptographic key comes from the security token hardware info
• base cryptographic key is stored in in-memory context after initialization
• additional cryptographic key is stored in the in-memory context
• base and additional cryptographic keys get to the in-memory context via PKG_FCBCRYPTO.PRC_INIT

procedure call
• base cryptographic key and additional cryptographic key can be guaranteed erased from the memory by

PKG_FCBCRYPTO.PRC_DEINIT procedure call, the in-memory context’s deletion by database
administrator or by the database reboot

• real cryptographic key is a derivative of the base and additional cryptographic keys
• real cryptographic doesn’t store in the in-memory context where the base and additional cryptographic

keys do
• real cryptographic key is calculated every time when data encryption/decryption PKG_FCBCRYPTO

package routines are called
• data are encrypted and decrypted by the real cryptographic key only
• any keys aren’t stored in the constant database objects like tables
• PKG_FCBCRYPTO.PRC_INIT procedure must be call only once if context was defined as global55

• PKG_FCBCRYPTO.PRC_INIT procedure must be call every time when session is created if context
was defined as local

• Encryption/decryption is impossible without initial PKG_FCBCRYPTO.PRC_INIT procedure call

DATA COMPRESSION

FCBCRYPTO software provides a data compression option for char, nchar, varchar2, nvarchar2, string, blob,
clob, nclob, raw, long, long raw SQL and PL/SQL data types. Compression availability is not a goal of
FCBCRYPTO software, but a side effect. This effect got a life because of

• impossibility to forecast the size of encrypted data especially for *char* and string data types.
• obligatory conversion for the text contained data to ALT32UTF8 format before encryption

FCBCRYPTO software data compression bases on Oracle UTL_COMPRESS package. FCBCRYPTO software
user may change compression quality in the range from 0 to 9, i.e. 0 = no compression, 1 = fast compression, 9
= best compression quality. Default value is 6 and it comes from

SQL> select S_NAME, S_VALUE
 from TBL_FCBCRYPTO_SETTING
 where S_NAME like 'g_%_deflation_ratio' and S_ACTIVE='Y';

S_NAME S_VALUE
---------------------- --------------
g_str_deflation_ratio 6
g_raw_deflation_ratio 6
g_blob_deflation_ratio 6
g_clob_deflation_ratio 6

 (see SETTINGS chapter). Please have a note compression could be ineffective in case of small size data.
Also you can use either default ratio or customized ratio via l_custom_deflation input parameter of

55 see g_context in TBL_FCBCRYPTO_SETTING table

26

 FCBCRYPTO

encryption/decryption PKG_FCBCRYPTO package routines (see AFTER INSTALLATION chapter). Customized
ratio has higher priority over default TBL_FCBCRYPTO_SETTING table ratio. It’s highly not recommended to
use l_custom_deflation input parameter less than 5 when string field has length less than maximum, i.e.
4000 or 32767 characters, because it can lead to impossibility to store encrypted data.

DEMOS, EXAMPLES AND TESTS

If your answer was “yes”

>>>>>> Installation of FCBCRYPTO software v.1.2.61 has been finished successfully.

If you choose to continue two files clob.txt and fjmo.pdf will be copied from
fcbcrypto/bin/../dat to “l_KEYFILE_DIRECTORY4“ directory in LOB test purposes

Continue to create demo and test objects and run tests? (y/n)

you have installed and valid Oracle database demo and test objects (triggers and sequences are not listed):

• PKG_FCBCRYPTO_DEMO package
• VIW_FCBCRYPTO view
• VIW_FCBCRYPTO_SHORT view
• TBL_FCBCRYPTO table
• TBL_FCBCRYPTO_BLOB table
• GTT_FCBCRYPTO global temporary table

So how demos and PKG_FCBCRYPTO package in general can be used?

Variant A.

VIW_FCBCRYPTO_SHORT view is based on the statement

SQL> select *

27

 FCBCRYPTO

INSERT

DELETE

UPDATE

SELECT

V
IW

_
F

C
B

C
R

Y
P

T
O

_
S

H
O

R
T

INSTEAD OF INSERT

INSTEAD OF UPDATE

INSTEAD OF DELETE PKG_FCBCRYPTO

T
B

L
_

F
C

B
C

R
Y

P
T

O

PKG_FCBCRYPTO_DEMO

SELECT

 from table(PKG_FCBCRYPTO_DEMO.FNC_UNVEIL_BULK_SHORT(cursor(select * from
TBL_FCBCRYPTO)));

Plain data go to VIW_FCBCRYPTO_SHORT view. VIW_FCBCRYPTO_SHORT view contains three “instead of
insert, update and delete” triggers. When insert, delete or update statements are performed, triggers catch data,
encrypt data via PKG_FCBCRYPTO package and insert encrypted data into TBL_FCBCRYPTO table.
TBL_FCBCRYPTO table stores encrypted data only. When select statement is performed from
VIW_FCBCRYPTO_SHORT view a PKG_FCBCRYPTO_DEMO.FNC_UNVEIL_BULK_SHORT function
requests encrypted data from TBL_FCBCRYPTO table, decrypts data via PKG_FCBCRYPTO package and
return plain data to VIW_FCBCRYPTO_SHORT view.

Variant B.

VIW_FCBCRYPTO view is based on the statement

SQL> select *
 from table(PKG_FCBCRYPTO_DEMO.FNC_UNVEIL_BULK(cursor(select * from
GTT_FCBCRYPTO)));

Plain data go to VIW_FCBCRYPTO view. VIW_FCBCRYPTO view contains three “instead of insert, update and
delete” triggers. When insert, delete or update statements are performed, triggers catch data, encrypt data via
PKG_FCBCRYPTO package and insert encrypted data into TBL_FCBCRYPTO table. TBL_FCBCRYPTO table
stores encrypted data only. TBL_FCBCRYPTO table contains three “after insert, update and delete” triggers
also. After data committing triggers call PKG_FCBCRYPTO package, PKG_FCBCRYPTO package decrypts
data and plain decrypted data are inserted into global temporary GTT_FCBCRYPTO table. Why global
temporary table? Because indexes can be created on it. GTT_FCBCRYPTO table contains session level only
plain decrypted data. When select statement is performed from VIW_FCBCRYPTO view a
PKG_FCBCRYPTO_DEMO.FNC_UNVEIL function requests data from GTT_FCBCRYPTO table and returns
plain data to VIW_FCBCRYPTO view.

See more details in files

• sql/step_5_test.sql
• sql/cre_pkg_fcbcrypto_demo.pck
• sql/step_7_test.sql
• sql/step_8_test.sql
• sql/step_10_test.sql

28

 FCBCRYPTO

INSERT

DELETE

UPDATE

SELECT

V
IW

_F
C

B
C

R
Y

P
T

O

INSTEAD OF INSERT

INSTEAD OF UPDATE

INSTEAD OF DELETE PKG_FCBCRYPTO

PKG_FCBCRYPTO_DEMO
SELECT

A
F

T
E

R
 U

P
D

A
T

E

A
F

T
E

R
 IN

S
E

R
T

A
F

T
E

R
 D

E
L

E
T

E

PKG_FCBCRYPTO

TBL_FCBCRYPTO

GTT_FCBCRYPTO

• sql/step_11_test.sql
• sql/step_12_test.sql
• sql/step_14_test.sql
• sql/step_15_test.sql
• sql/step_17_test.sql
• sql/step_18_test.sql

VERSION

$ sqlplus ******/******
...
SQL> set serveroutput on
SQL> exec pkg_fcbcrypto.prc_about;

FCBCrypto software v.1.2.290
Copyright (c) 2018, Olexandr Siroklyn. All rights reserved.

$ sqlplus ******/******
...
SQL> select pkg_fcbcrypto.fnc_about from dual;

FNC_ABOUT
--
FCBCrypto software v.1.2.290 Copyright (c) 2018, Olexandr Siroklyn. All rights r
eserved.

TAMPER-PROOFING

PKG_FCBCRYPTO package is a tamper-proof featured PL/SQL package. It is protected against reverse
engineering and modifications via: wrapping and obfuscation techniques, control sum presence and some other
stuffs. Package integrity self-checking can be performed in case of suspicions the package body was
unauthorized modified. That modification can be detected via

$ sqlplus ******/******
...
SQL> select pkg_fcbcrypto.fnc_integrity from dual;

FNC_INTEGRITY
--
Integrity check passed. No package code modification detected.

$ sqlplus ******/******
...
SQL> select pkg_fcbcrypto.fnc_integrity from dual;

FNC_INTEGRITY
--

29

 FCBCRYPTO

Integrity check failed. Package code modification detected.

COPYRIGHTS

Copyright 2022 Olexandr Siroklyn. All rights reserved.

CONTACTS

Olexandr Siroklyn
Clearwater, FL, USA | +1-727-252-9680

30

 FCBCRYPTO

mailto:olexandr.siroklyn@outlook.com
https://www.linkedin.com/in/olexandr-siroklyn-4a483615/

	CONCEPT
	BEGINING
	PREREQUISITES
	DATA ENCRYPTION KEY
	CORE CODE SIGNING
	Core code signing summary
	How core code signing works

	BFILE ENCRYPTION
	SECURITY TOKEN ENCRYPTION
	SETTINGS
	AFTER INSTALLATION
	KEY MANAGEMENT
	Initialization
	Deinitialization
	Security token presence verifying
	Key management summary

	DATA COMPRESSION
	DEMOS, EXAMPLES AND TESTS
	VERSION
	TAMPER-PROOFING
	COPYRIGHTS
	CONTACTS

